Topology Semestral Examination 20th September 2012

Instructions: All questions carry equal marks. All sets and collections in the questions are assumed to be non-empty!

- 1. A subbasis S for a topology on X is a collection of subsets of X whose union is X. The topology generated by a subbasis is the collection T of all unions of finite intersections of elements of S.
- (a). Prove that the collection of all finite intersections of elements of a subbasis S forms a basis of the topology generated by S. (Such a basis is said to be generated by a subbasis.)
- (b). Give an example of a basis of the real line \mathbb{R} that is generated by a subbasis and an example of one that is not generated by any subbasis.

2.

- (a). Define a retraction of a space X onto a subspace A. Prove that a retraction is a quotient map.
 - (b). Prove that the map $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = y^3 + xy^2 + x + y$$

is a quotient map.

- **3.** Let X and Y be connected spaces and A and B be proper subsets of X and Y respectively. Prove that $(X \times Y) \setminus (A \times B)$ is connected.
- **4.** Recall that a point x of a space X is called an *isolated point* if $\{x\}$ is open in X.
- (a). Prove that a compact hausdorff space without an isolated point must be uncountable.
- (b). Does (a) imply that the set of rationals in the compact interval [0,1] are uncountable? Justify your answer.
- 5. Prove that a subspace A of the real line $\mathbb R$ is compact if and only if every continuous real valued function on A is bounded.